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Marine algae are prolific source of bioactive secondary metabolites and are found to be active against dif-
ferent cancer cell lines. QSAR studies will explicate the significance of a particular class of descriptor in
eliciting anticancer activity against a cancer type. Marine algal compounds showing anticancer activity
against six different cancer cell lines namely MCF-7, A431, HeLa, HT-29, P388 and A549 taken from
Seaweed metabolite database were subjected to comprehensive QSAR modeling studies. A hybrid-GA
(genetic algorithm) optimization technique for descriptor space reduction and multiple linear regression
analysis (MLR) approach was used as fitness functions. Cell lines HeLa and MCF-7 showed good statistical
quality (R2 � 0.75, Q2 � 0.65) followed by A431, HT29 and P388 cell lines with reasonable statistical val-
ues (R2 � 0.70, Q2 � 0.60). The models developed were interpretable, with good statistical and predictive
significance. Molecular descriptor analyses revealed that Baumann’s alignment-independent topological
descriptors had a major role in variation of activity along with other descriptors. Incidentally, earlier
QSAR analysis on a variety of chemically diverse PKBa inhibitors revealed Baumann’s
alignment-independent topological descriptors that differentiated the molecules binding to Protein
kinase B (PKBa) kinase or PH domain, hence a docking study of two crystal structures of PKBb was per-
formed for identification of novel ATP-competitive inhibitors of PKBb. Five compounds had a good dock-
ing score and Callophycin A showed better ligand efficiency than other PKBb inhibitors. Furthermore in
silico pharmacokinetic and toxicity studies also showed that Callophycin A had a high drug score
(0.85) compared to the other inhibitors. These results encourages discovering novel inhibitors for cancer
therapeutic targets by screening metabolites from marine algae.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction target for treating cancers of multiple origins. Akt consists of three
Cancer is a complex disease of global concern. In 2008, about
70% of cancer deaths took place in countries with low- and middle
income. The American Cancer Society estimated a total of
1,665,540 new cancer cases and 585,720 cancer deaths are pro-
jected to occur in the United States alone in 2014 (Siegel et al.,
2014). In analogy, Cancer deaths continue to keep rising worldwide
and in 2030 it is projected to be a cause for 13.1 million deaths
(Ferlay et al., 2010). Cancer-relevant genes have been intensively
studied and numerous therapeutic targets which play a vital role
in cancer pharmacology have been elucidated.

Protein kinase B (PKB/Akt) is a foremost protein mediating the
proliferation and involving several pathways that are essential
for the growth of cancer, which makes it a unique therapeutic
different cellular isoforms, namely, Akt1 (PKBa), Akt2 (PKBb), and
Akt3 (PKBc). All three Akt isoforms have the ability to transform
into cancerous cells in vitro. However, Akt2 is the major isoform
found to be amplified or over expressed in human cancer which
has been observed in pancreatic tumours (10%), hepatocellular car-
cinomas (40%) and colorectal cancers (57%) (Hers et al., 2011).
Several functionally important regions are present in the protein;
specifically the central kinase domain has a classical kinase
ATP-binding site that can be explored as binding pockets for small
molecule inhibitors. Virtual screening have been employed in pre-
vious studies to identify potent inhibitors using the crystal struc-
ture of PKBb in complex with glycogen synthase kinase-3b
peptide (GSK-3b) and 50-adenylylimidodiphosphate (AMP–PNP)
(Vyas et al., 2013). Medina-Franco et al. (2009) reported the dis-
covery of a novel competitive inhibitor for ATP binding site by
search in a different area of chemical space for selective and potent
inhibitors.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejps.2015.04.026&domain=pdf
http://dx.doi.org/10.1016/j.ejps.2015.04.026
http://dx.doi.org/10.1016/j.ejps.2015.04.026
http://www.sciencedirect.com/science/journal/09280987
http://www.elsevier.com/locate/ejps
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Marine organisms constitute an important source of novel
molecules for new drug discovery and drug development research
of which 25% are from algae. Seaweeds have a distinct evolution on
their biosynthetic pathways that frequently yield complex mole-
cules with no counterparts in the terrestrial environment.
Secondary metabolites from these algae are predominantly
sesquiterpenes, diterpenes, triterpenes and C15-acetogenins char-
acterized by the presence of halogen atoms in their chemical struc-
tures. An online database – Seaweed Metabolite Database (SWMD)
was developed by us to share organized information about marine
algal secondary metabolites and their geographical location
obtained by literature data mining (www.swmd.co.in). It presently
has 1055 compounds from red, green and brown macroalgae
describing the method of compound extraction, chemical descrip-
tion of the compound and biological activity of the compound i.e.,
antibacterial, antimalarial, antioxidant and cytotoxic activities
(Davis and Vasanthi, 2011).

Quantitative Structure–Activity Relationship (QSAR) modeling
is a ligand-based drug design method for both exploring and
exploiting the relationship between chemical structure and its bio-
logical action (Liao et al., 2011). To predict the activities of anti-
cancer compounds, quantum chemical descriptors like molecular
orbital, dipole moment, charge, etc. and molecular property
descriptors like hydrophobic, steric coefficient, etc. have been
applied to develop 2D QSAR models (Chen et al., 2007; Zhang
et al., 2007). In-vitro evaluation of biological activity can be per-
formed on a number of cell lines for a specific cancer type, but
the results of the evaluation would vary based on the cell line
employed for the assay. Consequently to design novel and potent
anticancer compounds, all the experimental data has to be consid-
ered from all the cell lines, such analyses involving all the QSAR
descriptors would pave way for predictive models highlighting
the importance of a particular class of descriptor in modeling anti-
cancer activity against a specific cancer type (Bohari et al., 2011).
Such extensive QSAR studies against many diverse cancer cell lines
which are statistically robust are warranted. Hence, a comprehen-
sive 2D QSAR modeling study was performed in the present study
using the compounds in SWMD that have cytotoxic activity.
2. Methodology

SWMD which has 1055 entries, 245 compounds (23%) has doc-
umented anticancer activity against 43 different cell lines. For con-
tinuous response variable (activity), the total minimum number of
compounds should be no less than 40 as the number of compounds
in the training set should be at least 20, and about 10 compounds
should be in each of the test and external evaluation sets (Tropsha,
2010). Therefore, the dataset taken for the study has 157 com-
pounds having cytotoxic activity against six different cancer cell
lines namely MCF-7 (Human breast adenocarcinoma), A431
(Human epithelial carcinoma), HeLa (Human cervical adenocarci-
noma), HT-29 (Human colon adenocarcinoma grade II), P388
(Murine leukemia) and A549 (Human lung epithelial adenocarci-
noma) cells, each having more than 40 compounds (Table 1). The
Table 1
Cell lines against which their anticancer activity was reported in SWMD along with
the number of molecules in each cell lines.

S. No. Cell
lines

Cancer type # of
compounds

1 A549 Human lung epithelial adenocarcinoma 72
2 MCF7 Human breast adenocarcinoma 65
3 HT29 Human colon adenocarcinoma grade II 62
4 P388 Murine leukemia 54
5 HeLa Human cervical adenocarcinoma 50
6 A431 Human epithelial carcinoma 41
dataset consists of chemical diverse compounds which include
sesquiterpenes, diterpenes, triterpenes, sterol and acetogenins that
are usually characterized by the presence of one or more halogen
atoms in their structures (Fig. 1). The structure of all the 157 com-
pounds and their experimental cytotoxic activity against six cell
lines listed in SWMD along with its accession numbers are pre-
sented in Additional file (Tables S1).

Measurement of cytotoxic activity is expressed as half maximal
(50%) inhibitory concentration of a substance (IC50) and values are
expressed in nanomolar (nM – 10�9) and micromolar (lM – 10�6)
levels. The values were converted to the pIC50 scale (�logIC50) to
predict the narrow value wherein higher values indicate exponen-
tially greater potency. The formula for micromolar conversion of
IC50 values to pIC50 values is

pIC50 ¼ � logðIC50 � 10�6Þ

The pIC50 values were used as the dependant variables to construct
the QSAR model.

2.1. Calculation of molecular descriptor

QSAR modeling involves the use of software to sketch chemical
structures and calculate the descriptors to build predictive models.
The molecules to be used in the study were taken from SWMD and
3D structures were generated using MarvinSketch 2011 (v.5.4.1.1)
from ChemAxon. The resultant structures are crudely optimized
using a molecular mechanics method within MarvinSketch
(Csizmadia, 2000). Since some molecular descriptors also require
information about the electronic environment of the molecule,
the molecules were also optimized for electronic properties with
Molecular Orbital PACkage (MOPAC) using WinMopac 7.21 soft-
ware (Stewart, 1990). Descriptors for the present study were
obtained using Vlife MDS 3.5; 239 descriptors based on the physic-
ochemical properties of the molecule and 391 alignment indepen-
dent descriptors considering topology of the molecule was used
(VLife sciences technologies).

2.2. Selection of relevant descriptors

To select the most important descriptors and to decrease the
overfitting/overtraining risk, Feature selection techniques were
applied to decrease the model complexity using open source
software – WEKA (Waikato Environment for Knowledge
Analysis) from The University of Waikato (v.3.6.6) (Hall et al.,
2009). The dataset consists of 157 anticancer compounds from
SWMD for six cancer cell lines models with 630 descriptors each.
Filters were applied in the first step to remove compounds and
descriptors with missing or null values. Either one of the corre-
lated descriptors having more than 90% correlation in their val-
ues were identified and removed. To search the descriptor
subspace, linear forward selection was used wherein;
correlation-based feature selection (CFS) algorithm in WEKA
was employed to evaluate the descriptors. Efforts taken to keep
the descriptors employed in the models virtually orthogonal to
each other include changing and refining the descriptors that
were highly inter-correlated in a given model. This
pre-screening gave a quality-assured dataset of compounds
which are used for further analysis.

Selection of descriptors was done using the hybrid optimization
technique developed by Rogers and Hopfinger wherein a wrapper
of genetic algorithms (GA) for feature selection and multiple linear
regression (MLR) as regression technique was employed (Rogers
and Hopfinger, 1994). The GA was employed for searching the
descriptor subspace, whereas the MLR was used for fitness evalua-
tion to determine the significant descriptors. GeneticSearch in

http://www.swmd.co.in


Fig. 1. Structurally diverse cytotoxic compounds in Seaweed Metabolite Database (SWMD).
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WEKA uses a simple genetic algorithm (Goldberg et al., 1993) and
default values were selected for the GA parameters, such as 20 gen-
erations, population size of 20, crossover probability of 0.6 and
mutation probability of 0.033. The attribute selection in WEKA
employed for MLR uses the M5’s method where the attributes
are removed stepwise given by the Akaike information criterion;
the ones with the smallest standardised coefficient is removed
until no improvement in the estimate of the error is observed
(Witten and Frank, 2005). The extent of the coefficients discloses
the degree of influence of the corresponding molecular descriptors
on the given property.

2.3. Validation of QSAR models

The regression models are developed by dividing the dataset
into multiple chemically diverse training and test sets with a
rational approach based on Sphere Exclusion (SE) algorithm
(Golbraikh and Tropsha, 2002). To evaluate the performance of
the QSAR model, Leave-one-out cross validation (Q2) is carried
out to obtain the optimal number of components (N) and the cor-
relation coefficient R2. To evaluate the performance without any
bias, two independent test set was made and the remaining com-
pounds were used for model development. Models were developed
using the training set while the test set was not used but serves to
test the extrapolative ability of final models. For each compound in
the training set, a correlation equation was derived with descrip-
tors. The observed and predicted activity with residuals and
descriptor values for all the developed models are presented in
Additional file (Tables S2–S13). The predicted biological activities
of untested compounds from their molecular structures are also
presented in the above said tables. The two independent test set
are presented at the end of the table marked with asterisks. The
MLR regression equations for each of the table are also presented
in Additional file (Tables S2–S13).
2.4. Docking of protein kinase (PKB b) inhibitors

Structures of PKBb were taken from Protein databank that
were quite similar; (PDB ID: 2UW9 and 2JDR). The backbone
RMSD for the whole protein was only 0.36 Å and 0.3 Å for the
binding site residues that are within 5 Å of ligand
(Medina-Franco et al., 2009). Bioactive conformation was simu-
lated for 2UW9 and 2JDR using Molegro Virtual Docker (MVD
v3.0.0) which implements evolutionary algorithms for molecular
docking simulations and docking was performed by Moldock
function (Thomsen and Christensen, 2006). For both PDB struc-
tures, during docking water molecules were removed and
co-crystal inhibitors were ignored. From the docking wizard,
ligands were selected from SWMD; 157 cytotoxic compounds
that were used in the QSAR study.

The protein and ligands molecules were prepared at first and
bonds, bond orders, explicit hydrogens, charges and flexible tor-
sions, were assigned if they were missing using the MVD pro-
gram. MVD was used for active site (pocket) detection on
PKBb protein. The ATP binding site was defined as active site
box having volumes of 359 Å3 and 388 Å3 for 2UW9 and 2JDR,
respectively. Further, the binding site was delineated by choos-
ing all atoms within 10 Å of the analogous crystallographic
ligand with the cavity detection mode active and using default
parameters. The Ignore distant atoms option was applied to
ignore atoms far-off from the binding site. The search algorithm
taken was Moldock SE and the number of runs taken as 10 and
max iterations were 2000 with population size of 50 and with
an energy threshold of 100. The energy penalty was set to
100, RMSD threshold was 2.00 and RMSD calculation by atom
ID (fast) were set. After the docking simulation was completed
the poses generated were sorted by rerank score (De Azevedo,
2010). Results of the top ligands whose rerank score >�100
were selected.
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2.5. In silico ADMET analysis

Successful drug discovery necessitate good pharmacokinetics
and no toxicity of lead structures which would make it more
drug-like. In silico tools on absorption, distribution, metabolism,
excretion and toxicity (ADMET) screening of candidate drugs help
to reduce the risk of late-stage attrition and optimize the most
promising compounds. Therefore, the ligands with top docking
score were further screened for druglikeliness, drug score and tox-
icity characteristics using the program OSIRIS property explorer
(v.2.0) (Sander et al., 2009).
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Fig. 3. Effect of number of descriptors on the correlation coefficient.
3. Results and discussion

The predictive QSAR models were built for six different cancer
cell lines with experimental data from 157 compounds, using inde-
pendent and with minimum number of descriptors. The distribu-
tion of IC50 values among the six cell lines was seen to differ
from one compound to another and is shown Fig. 2. The criterion
for selecting the best model was based on the correlation coeffi-
cient values taken from the correlation of approximately 630
descriptors in different combinations. To evaluate the effect of
the number of descriptors on the correlation coefficient values,
all the models were tested on training set by correlating 1–10
descriptors separately and presented in Fig. 3.

It was observed that in various models, four descriptors were
adequate for obtaining a good correlation and in most of the mod-
els using more than four descriptors made only a little variation on
the statistical quality. While in most of the cases, seven or more
descriptor-based models gave high correlation and
cross-validation coefficient values, nevertheless this may be false
and so will not be accurate in prediction of IC50 values further.

Various statistical measures were adapted in the present study
to assess and compare the predictive power and the stability of
QSAR models, which is also widely applied for evolution of a signif-
icant model. As four descriptors were sufficient for getting a good
correlation, all the training set had more than 20 numbers of mole-
cules. Square of the correlation coefficient (R2) represents the sta-
tistical significance of the model, herein all the models in the study
were inferred significant if R2 is greater than 0.7. While Q2 is the
cross-validated R2, a measure of the quality of the QSAR model
was inferred significant if Q2 is greater than 0.5. Fischer statistics
(F) is the ratio between explained and unexplained variance for a
given number of degrees of freedom. This indicates a factual corre-
lation or the significance level for QSAR models. Higher the F-test
more significant is the model. The average of absolute difference
between experimental and predicted IC50 values is average resid-
ual (AE). Lower the AE, more significant is the model.
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Fig. 2. Distribution of IC50 value among cell lines.
Regression equation for the QSAR models is presented in the
regression summary along with name of the cell lines and types
of cancer (Table 2). To identify that the developed models are valu-
able, AE was calculated for both training and test set of compounds
and it was found that all the models have a lower AE values (0.15–
0.35), thus have the capability to establish the relationship
between the structure and activity. The QSAR models for HeLa
(Cervical) and MCF-7 (Breast) cell lines can be used for the predic-
tion as it exhibits good statistical quality (R2 � 0.75, Q2 � 0.65) and
considered valuable for the available class of compounds. The sta-
tistical quality of A431 (Epithelial), HT29 (Colon) and P388
(Leukemia) cell lines are also reasonable (R2 � 0.70, Q2 � 0.60),
and extra care is required before utilizing these models for the pre-
diction. However, the statistical quality of A549 (Lung) cell lines
cannot be used for the prediction because of the insignificant sta-
tistical results obtained for this model (R2 = 0.67, Q2 = 0.50). The
reason for poor result in A549 cell lines is probably due to the
involvement of diverse compound types in this model. The
increase in the number of descriptors for A549 does not improve
the quality of the model (with 10 descriptors R2 � 0.78) and thus
indicates that the currently used four descriptors are good enough
for developing the structure–activity relationship for this model.

Statistical quality of QSAR depends on the distribution of IC50 val-
ues of compounds among the cell lines where IC50 values are dis-
tributed in broad range would show good statistical quality and
vice versa. IC50 values for HeLa and MCF-7 cell lines are for a broad
range wherein the predictions showed good statistical quality
(Fig. 2). The range of IC50 values for A431, HT29, P388 and A549 cell
lines are reasonable and so also the QSAR prediction. The quality of
the QSAR model was poor for A549 cell lines as the compounds had
diverse structures as shown in Additional file (Table S14).
Compounds that do not fit in the developed QSAR model are called
as outliers. Compound RL018 (2-tridecyl-2-heptadecenal) is an out-
lier in A431, HeLa and MCF7 QSAR models as it has an aliphatic
hydrocarbon whereas the others are aromatic compounds.

The experimental and predicted IC50 values for training and test
set (1) and the number compounds in both the sets along with
their average residual for all QSAR models are represented in
Fig. 4. This figure clearly demonstrates that the compounds of
the test set are closer to the line compared with the compounds
of training set. The applicability of generated QSAR models was rig-
orously validated by dividing another independent test set. The
statistical performance of the second test set was similar to that
of the first test set. Both the test sets revealed similar statistical
performance indicating that the developed models were satisfac-
tory. The observed and predicted activities with residuals and
number compounds in training and test set are presented in
Fig. 5, for all the developed models for the second set of test
compounds.



Table 2
Regression summary for all the QSAR models.

Cell line
(Type)

# compounds Regression equation R2 Q2 AE F

TR TS PD O

A431 24 4 12 1 =�0.2967 ⁄ 5ChainCount + 0.2105 ⁄ SsssCHE-index
�0.1817 ⁄ T_2_Br_5 + 0.3143 ⁄ T_O_Br_4 + 4.1884

0.74 0.60 0.15 13.76
(Epithelial) 0.73 0.51 0.16 12.67

A549 46 9 17 0 =�0.1969 ⁄ SaaCHE-index + 1.1969 ⁄ T_2_Cl_1 + 0.5973 ⁄ chiV3Cluster
�3.2011 ⁄ SAMostHydrophilic + 4.5436

0.67 0.50 0.23 21.16
(Lung) 0.65 0.47 0.25 18.95

HeLa 34 7 8 1 =0.0039 ⁄ 5PathCount �0.0929 ⁄ XlogP + 0.5874 ⁄ T_O_Br_6 + 0.2666 ⁄ 3ChainCount + 4.0602 0.79 0.67 0.21 27.83
(Cervical) 0.78 0.71 0.19 25.74

HT29 42 8 12 0 =0.3328 ⁄ SdssCE-index
�9.9514 ⁄ SAAverageHydrophilicity + 0.1929 ⁄ T_2_2_4 + 9.7350 ⁄ chiV6chain + 3.5298

0.73 0.58 0.35 25.39
(Colon) 0.78 0.61 0.32 32.46

MCF7 31 6 26 1 =�4.8683 ⁄ chiV5chain + 0.2718 ⁄ 6ChainCount + 0.1071 ⁄ T_O_Br_4 + 0.0674 ⁄ T_2_2_5 + 3.9220 0.74 0.67 0.22 18.40
(Breast) 0.77 0.69 0.22 21.16

P388 39 9 6 0 =18.4947 ⁄ chi6chain �0.2150 ⁄ T_O_O_2 –0.0535 ⁄ T_2_O_4 –0.2514 ⁄ 3ChainCount + 3.4853 0.73 0.67 0.29 22.98
(Leukemia) 0.72 0.66 0.32 21.52

Cell line with type of cancer in parenthesis, regression summary (regression equation, correlation coefficient (R2), cross validation coefficient (Q2), average residual (AE) and
number of outliers (O) and number of compounds (training set (TR), test set (TS) and predicted set (PD)) in various cell lines based QSAR models for both the test set.
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In the developed QSAR models, 22 descriptors (14
Physicochemical and 8 Baumann’s Alignment independent) were
used in different combinations. The particulars of all the 22
descriptors, its type and incidence in the models are depicted in
Fig. 6. The details of the descriptors involved in the study and their
occurrence in the QSAR models is shown in Additional file
(Table S14). The inter-correlation of the descriptors appeared in
all the developed models were taken into account, and the descrip-
tors were found to be reasonably orthogonal and presented in
Additional file (Table S15). All the models have identified align-
ment independent descriptors as vital descriptors. The ‘atom and
bond count’ descriptors especially number of Oxygen, Bromine
and Chlorine atoms is chosen in most models. It is well known that
the seaweed metabolites are biologically active due to the high
degree of halogenations thereby exhibiting antibacterial, antifun-
gal, antiviral, anti-inflammatory, antiproliferative, cytotoxic,
antifouling, antifeedant, ichthyotoxic, and/or insecticidal activity
(Lhullier et al., 2010). The same is reflected in the obtained descrip-
tors as halogenation of molecules increases the cytotoxic activity
and is also proved. Chain path count descriptors (such as
3ChainCount, 5ChainCount, 6ChainCount), retention index and
atomic valence connectivity index also were identified in the mod-
els. The maximum six membered rings positively influence the
activity and percentage contribution in most of the models
(Fig. 7). The Hydrophobicity SlogpA descriptors which is the hydro-
philic value on the Van der Waals surface of molecules decreases
the anticancer activity of compounds. The other descriptors
include Estate contributions which are the Electrotopological state
indices of valency of C atoms and bond order.

QSAR analyses on a wide variety of structurally diverse Akt1
inhibitors revealed the central role of Baumann’s alignment inde-
pendent topological descriptors beside additional descriptors such
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as the number of hydrogen bond donors, hydrogen bond acceptors,
rotatable bonds and aromatic oxygen (SaaOcount) together with
alkene carbon atom type (SdsCHE-index) and molecular branching
(chi3Cluster), in accomplishing differential activity (Ajmani et al.,
2010). Further in the same study, Group-based QSAR analyses
showed that for achieving highly potent Akt1 inhibitors, chemical
variations such as presence of hetero-aromatic ring, flexibility,
polar surface area and fragment length present in the hinge bind-
ing fragment are highly influential. In addition, the study also
reported a three descriptors model using k-nearest neighbor clas-
sification to differentiate molecules binding to Akt1 kinase or PH
domain and reported the main role of oxygen (SssOE-index) and
aromatic carbon (SaaCHE-index and SaasCE-index) atoms
electro-topological environment in binding to Akt1 kinase.
Structure–activity analysis of Akt1 kinase reported by Ajmani
et al. (2010) correlated well with the descriptor attributes of our
present QSAR study of anticancer compounds from seaweeds.
Wherein, the anticancer activity was contributed by Baumann’s
alignment independent topological descriptors along with
Oxygen, Bromine and Chlorine atoms and aromatic carbon
(SaaCHE-index) atoms. Also as Akt isozymes are approximately
80 percent identical and have a high degree of overall homology,
the QSAR study was further extended to identify novel Akt2
inhibitors.

The 157 cytotoxic compounds from SWMD were docked at the
ATP binding site of 2JDR and 2UW9 wherein several molecules
showed a better Moldock score than the co-crystal inhibitor. A
low degree of consensus of Moldock score was observed with each
crystal structure (2UW9 and 2JDR) between the top ranked scoring
molecules. In general among the top 10 ranked compounds docked



69.77

-8.86

64.32

39.44

-20 0 20 40 60 80

5PathCount

XlogP

T_O_Br_6

3ChainCount

HeLa Cells

-32.9

26.77

-17.38

30.94

-40 -20 0 20 40

5ChainCount

SsssCHE-index

T_2_Br_5

T_O_Br_4

A431 Cells

-40.8

12.21

15.61

-9.29

-50 -30 -10 10 30

SaaCHE-index

T_2_Cl_1

chiV3Cluster

SAMostHydrophilic

A549 Cells

-37.38

48.19

41

37.86

-60 -40 -20 0 20 40 60

chiV5chain

6ChainCount

T_O_Br_4

T_2_2_5

MCF7 Cells

38.79

-42.61

10.33

30.18

-60 -40 -20 0 20 40 60

SdssCE-index

SAAverageHydroph
ilicity

T_2_2_4

chiV6chain

HT29 Cells

59.15

-21.52

-19.97

-11.38

-40 -20 0 20 40 60 80

chi6chain

T_O_O_2

T_2_O_4

3ChainCount

P388 Cells

Fig. 7. Percentage contribution of each descriptor in developed QSAR model explaining variation in the activity.

Table 3
Docking results of PKBb inhibitors.

Ligand name Molecular
formula

MolDock
score

Rerank
score

No of
H bond

H bond
energy

Ligand
efficiency

Interacting residues

LE1 LE2

PDB: 2UW9
RL378 C24H35BrO6 �139.13 �104.23 8 �9.39 �4.49 �3.36 Ala232, Glu230, Glu230, Thr213, Thr292, Asp293, Lys181, Lys277
RG009 C27H42O4 �135.71 �103.21 8 �14.15 �4.38 �3.33 Ala232, Ala232, Glu230, Glu230, Thr213, Asn280, Asp293, Lys277
RG004 C27H44O3 �130.26 �103.01 7 �10.42 �4.34 �3.43 Ala232, Ala232, Glu230 Glu230, Thr213, Lys277, Glu279

PDB: 2JDR
RL078 C30H53BrO7 �156.93 �100.91 8 �12.91 �4.13 �2.66 Ala232, Glu230, Glu230, Thr213, Thr292, Thr292, Asp293, Asp293
Laurenmariannol
RC002 C19H18N2O3 �123.00 �106.14 5 �9.81 �5.13 �4.42 Ala232, Glu230, Asp293, Glu200, Lys181
Callophycin A

Ligand Efficiency 1 (LE1) – Moldock score divided by Heavy Atoms count and Ligand Efficiency 2 (LE2) – rerank Score divided by Heavy Atoms count.
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with Moldock only one molecule was found in common in both
crystal structures. The selection of molecules were based on a high
docking score with rerank score >�100 and a characteristic feature
observed in several PKBb inhibitors which is the ability to make
hydrogen bonds with Glu230 and Ala232 (Saxty et al., 2007;
Vyas et al., 2013; Medina-Franco et al., 2009).

Docking results in the present study suggested that compound
from marine red algae RL378, RG004 and RG009 had a good docking
score for 2UW9 whereas RL078 and RC002 had a good docking score
for 2JDR (Table 3). RC002 (Callophycin A), tetrahydro-b-carboline
was isolated from the methanol extract of red algae Callophycus
oppositifolius and was shown to mediate anticancer and cytotoxic
effects on a series of human tumour cell lines and a normal mam-
malian cell line (Ovenden et al., 2011). Five H-bonds were formed
between ligand RC002 and protein PKBb (2JDR) with a rerank score
of 106.14 (Fig. 8). The oxygen atom (hydroxyl) of ligand RC002
formed two H-bonds, one with –NH2 of Ala232 and another car-
bonyl oxygen atom of Glu230. The oxygen atom of carboxylic acid
moiety formed two H-bond with NH2 of Lys181 and another with
carboxylic acid moiety oxygen atom of Glu200. Oxygen atom
(hydroxyl) of carboxylic acid formed H-bonds with –NH2 of
Asp293. RC002 which has a good docking score and ligand efficiency
better than the other ligands studied to be an active PKBb inhibitor
hit and confirms the affinity with Glu230 and Ala232.

Pharmacokinetic properties and toxicities were predicted for all
the five ligands that showed good docking results using OSIRIS
property explorer and are shown in Table 4. A compound’s
hydrophilicity is measured as the logarithm of its partition coeffi-
cient between n-octanol and water log(coctanol/cwater), given as logP
value of a compound. Calculated LogP (cLogP) is given by OSIRIS.
Drug absorption and distribution characteristics depend on its
aqueous solubility, estimated as logS value. The program calculates
the drug score which is the compound’s overall potential to qualify
for a drug by adding the total values of drug-likeliness, cLogP, logS,
molecular weight, and toxicity risks. Thus the drug score judges the
compound’s overall potential as a drug candidate wherein RC002
had the highest drug score (0.85) among the five compounds.
Docking studies at the ATP-binding site of PKBb and the in silico
ADMET properties suggest RC002 (Callophycin A) as a potential
anticancer drug candidate.



Fig. 8. Interaction of Callophycin A (RC002) in the ATP site of PKBb (PDB Code 2JDR). Docking studies showing 5 hydrogen bond interactions of Callophycin A with 2JDR at
Ala232, Glu230, Asp293, Glu200, Lys181. Hydrogen bonds are shown in green. Atom colors: black, carbon; red, oxygen; blue, nitrogen. The diagram was created with the
program LigPlot+ (v.1.4.5) Laskowski and Swindells, 2011. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 4
In silico ADMET prediction of PKBb inhibitors using OSIRIS property explorer.

Physicochemical and ADMET
parameters/properties

RL378 RG004 RG009 RL078 RC002

Mutagenic No Yes Yes No No
Tumorigenic No Yes Yes No No
Irritant Yes Yes Yes No No
Reproductive effective No No No No No
cLogP 2.65 5.98 5.32 3.22 0.67
Solubility �4.35 �5.89 �5.54 �5.58 �2.91
Molecular weight 498 416 430 604 322
Drug likeness �1.31 �2.52 �1.79 �10.96 2.44
Drug score 0.22 0.04 0.05 0.19 0.85

Solubility measured in mol/liter is estimated as logS value.
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4. Conclusion

A novel PKBb inhibitor with a unique scaffold compared to
existing published PKBb inhibitors was identified by virtual screen-
ing from marine algae. This would be a starting point for an opti-
mizing the molecule as PKBb inhibitor. Further development of
Callophycin A will include exploring the structure–activity rela-
tionship required to obtain the desired PKB selectivity. These
results further encourages discovering newer PKBb inhibitors for
the treatment of cancer and screening metabolites of marine algae
for particular beneficial biological effects which will undoubtedly
pay off in the future. The present study has shown a roadmap for
further exploiting the chemoinformatics approach in cancer drug
discovery using various molecular targets for the development of
novel anticancer agents from marine algae. The same approach
can further be used for drug discovery and development from
the ocean for other diseases as well.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejps.2015.04.026.
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